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FIELD FLOW FRACTIONATION 

E l i  Grushka 
Department of Chemistry, S t a t e  University 

of New York a t  Buffalo, ; juffalo,  New York 14214 

Karin Dahlgren Caldwell, Marcus N. Myers 
and J. Calvin Giddings 

SdLt Lake City,  Utah 84112 
Department of Chemistry, Univers i ty  of U t a h  

I .  INTRODUCTION 

Field-Flow Frac t iona t ion  (FFF) i s  a r e l a t i v e l y  new tech-  

nique with considerable p o t e n t i a l  i n  t h e  f i e l d  of macromolec- 

u l a r  ~ e p a r a t i o n s l - ~ .  Conventional separa t ion  t o o l s ,  such a s  gas 

chromatography ( G C )  , ex t r ac t ion ,  and l i q u i d  chromatography (LC) , 
rrequently f a i l  i n  t h e  case of macromolecules f o r  severa l  reasons.  

The low vapor pressure  of macromolecules r u l e s  out GC, a t  l e a s t  

a t  low pressures.  Classwise chemical s i m i l a r i t y  and t h e  tendency 

of macromolecules t o  exh ib i t  extremes i n  phase d i s t r i b u t i o n  make 

LC and ex t r ac t ion  methods d i f f i c u l t 6 .  

t h a t  have found the  g r e a t e s t  use i n  the f i e l d  of l a r g e  molecules 

a re  g e l  f i l t r a t i o n ,  ion-exchange chromatography, e l ec t rophores i s  

and u l t r acen t r i fuga t ion  (wi th  o r  without g rad ien t s ) .  

these  techniques a r e  l i m i t e d  i n  peak capacity.  I n  the  case of 

g e l  f i l t r a t i o n ,  f o r  ins tance ,  d e f i n i t e  upper and lower r e t en t ion  

l i m i t s  e x i s t ,  and t he  peak capac i ty  i s  correspondingly reduced7. 

Peak capac i t i e s  i n  e l ec t rophores i s  and u l t r acen t r i fuga t ion  have 

a square-root dependence upon the  appl ied  f ie ld8” .  

of t h e  separa t ing  power o f  e i t h e r  of t hese  f i e l d s  would l ead  t o  

an appealing enhancement of t h e  number of reso lvable  compounds. 

The separa t ion  methods 

Some of 

A cascading 
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GRUSHKA ET AL. 

Field-Flow Fract ionat ion i s  i n  i t s  nature  such a cascading pro- 

ces s l ,  and i n  t h i s  review we w i l l  give a b r i e f  descr ipt ion of 

t h e  theory behind the method as w e l l  as some examples of i t s  

experimental v a l i d i t y ,  involving the use of d i f f e r e n t  types of 

f i e l d s .  

11. THEORETICAL BACKGROUND 

A s  the  name Field-Flow Fractionation suggests, the method 

uses the  coupling of a force-f ie ld  with a flow p r o f i l e  t o  achieve 

d i f f e r e n t i a l  migration (Figure 1). The c a r r i e r  ve loc i ty ,  v ,  

should be slow enough such t h a t  laminar flow i s  ensured, and 

t h e  channel width i s  required t o  be small i n  order t o  give pro- 

nounced ve loc i ty  differences with small differences i n  dis tance 

from the w a l l  ( i . e .  , The force-f ie ld ,  

which can be e l e c t r i c a l ,  magnetic, g rav i t a t iona l ,  thermal, o r  
chemical, e t c . ,  i n  nature,  causes the  solute  molecules t o  accum- 

> > 0 near t he  w a l l ) .  

u l a t e  i n  a l aye r  of unique thickness near one channel w a l l .  

The solute  i s  then transported by flow along the channel a t  a 

rate f ixed by the  mean thickness of t he  l aye r .  

The idea of such a generalized coupling between force-f ie ld  

and f luid-veloci ty  p r o f i l e  was suggested by Giddings‘; it was 

proposed independently by Berg and Purcel l”  f o r  t he  special  

case of g rav i t a t iona l  f i e l d s  . 
We now look a t  t h e  origin, s t ruc tu re ,  and thickness of t h e  

solute  l aye r ,  for  t h i s  f i xes  the  r a t e  of solute  migration. In  

t h e  absence of flow, a force act ing on a molecule will induce a 

ce r t a in  average d r i f t  veloci ty ,  U,  along axis  x, which i s  l i n e a r -  

l y  dependent on the  f ie ld-s t rength and inversely s o  on the 

f r i c t i o n a l  res is tance t o  motion. The flux of solute  across a u n i t  

area normal t o  the  f i e l d  i s  influenced by t h e  magnitude of U ,  

t he  l o c a l  sample concentration c, and the diffusion r a t e  of  t he  

solute  under study. Writing the diffusion coe f f i c i en t  as  D ,  the  

f l u x  Jx along t h e  f i e l d  d i r ec t ion  x i s  described as follows 
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FIELD FLOW FRACTIONATION 

FIGURE 1 

I l l u s t r a t i o n  of  t he  bas ic  f ie ld- f low f r ac t iona t ion  p r inc ip l e .  

dc 
X dx J = - D -  + U . C  

which a t  s teady  s t a t e ,  where the  n e t  flux equals zero, l e a d s  

t o  the  expression 

a d i f f e r e n t i a l  equation with the  so lu t ion  

Since by our choice of coordinates,  x measures t h e  d i s t ance  

from the  w a l l  where so lu t e  accumulates, t h e  drift  ve loc i ty ,  U, i s  

a negative quant i ty .  Equation 3 can the re fo re  be wr i t t en  as 

c = co exp (-x 9) (4) 
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GRUSHKA ET AL. 

The constant co i s  t he  concentration a t  the  w a l l ,  x = 0, and IUl 
i s  the  absolute value of U. 

Equation 4 can be r ewr i t t en  a s  

where & = i s  a parameter with t h e  dimensions of a length  t h a t  

i s  an e f f e c t i v e  measure of t h e  th ickness  of t h e  so lu t e  l aye r .  

Under most circumstances i s  equal t o  t h e  average d is tance  of 

so lu t e  molecules from t h e  w a l l .  

A given fo rce - f i e ld  w i l l  now cause molecules of d i f f e r e n t  

kinds (wi th  d i f f e r e n t  d i f fus ion  c h a r a c t e r i s t i c s  and d i f f e r e n t  

f i e l d  s u s c e p t i b i l i t i e s )  t o  d i s t r i b u t e  unequally i n  t h e  f i e l d  

d i r ec t ion ,  x. For example, a l a r g e  induced d r i f t  ve loc i ty ,  IUI, 
pa i r ed  with a small d i f fus ion  coe f f i c i en t ,  D ,  w i l l  l e a d  t o  a 

small &-value and hence a very  compact wall-hugging zone. Con- 

ve r se ly  a s m a l l  mobi l i ty  toge ther  with a l a r g e  D value w i l l  g ive  

r i s e  t o  a l a r g e  fi and a r a t h e r  d i f fuse  zone. 

I n  FFF t he  unique l a t e r a l  d i s t r i b u t i o n  of each so lu t e ,  a s  

measured by varying a values,  i s  coupled with the  parabol ic  

v e l o c i t y  p r o f i l e  of an a x i a l l y  flowing solvent.  It stands t o  

reason t h a t  molecules of a spec ies  wi th  a t h i ck  l aye r  having a 

l a r g e  fi value w i l l  on t h e  average follow f a s t e r  stream l i n e s  than 

molecules of a species d i s t r i b u t e d  i n  a t h i n  l aye r  charac te r ized  

by a s m a l l  fi. 

Giddings2 and we s h a l l  here touch on only p a r t s  of t h i s  d i scus-  

s ion .  The average zone v e l o c i t y  i n  t h e  a x i a l  d i r e c t i o n  z i s  

given by 

This coupling has been discussed i n  d e t a i l  by 

c( x) being the  concentration d i s t r i b u t i o n  a s  expressed i n  

equations 3 ,  4, and 5, and v(x)  t he  v e l o c i t y  p r o f i l e  of t h e  
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FIELD FLOW FRACTIONATION 

ca r r i e r  l i qu id .  

dependent on flow channel geometry. 

two i n f i n i t e  p a r a l l e l  p l a t e s  spaced a distance w apar t ,  the  

flow p r o f i l e  takes the following ana ly t i ca l  form'' 

For obvious reasons t h i s  p r o f i l e  has t o  be 

I n  t h e  case of flow between 

AP v(x)  = - x.(w-x) 
;yI1L 

where AP i s  t h e  driving pressure,  'Tl the c a r r i e r  v i scos i ty  and 

L the length of the charnel. 

obtained through integrat ion of equation 5 between the  two channel 

w a l l s ,  normalized by divis ion with w 

The average veloci ty ,  (v) ,  i s  

APw2 (v) = - 12 n L 

The combination of equations 7 and 8 then gives us the  working 

analyt ical  expression for the  ve loc i ty  p r o f i l e  

The corresponding expression fo r  the case of flow i n  a c i r cu la r  

t ube l l  i s  given by 

i n  which R i s  the 

equation 10 

radius of the tube. 

The mean ca r r i e r  veloci ty ,  (v ) ,  can be measured experi- 

mentally by in j ec t ing  in to  the flow stream a solute  which i s  

unaffected by the f i e l d .  The measured retent ion time, tr, of 

t h i s  " ine r t "  solute yields  (v) through the expression 

L (v> = - 
tr 

A quantity of great  importance i n  d i f f e r e n t i a l  migration 

methods involving flow i s  t h e  r e l a t i v e  migration r a t e  or r e l a t i v e  

131 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
2
0
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



GRUSHKA ET AL. 

r e t en t ion  parameter, R ,  of a so lu t e  zone. This quan t i ty  i s  

defined a s  

V R =  j O S R S 1  (12) 

With t h e  help o f  equations 1 2  and 6 we can now wr i te  an ana ly t i -  

c a l  express f o r  R 

When solved e x p l i c i t l y  f o r  flow between i n f i n i t e  p a r a l l e l  p l a t e s ,  

R becomes4 

Figure 2 shows t h e  v a r i a t i o n  of R with respec t  t o  the  

dimensionless quant i ty  &/w. 
value of  a p a r t i c u l a r  sample, t h e  smaller i s  i t s  r e t en t ion  param- 

e t e r  R and consequently t h e  smaller i t s  zone ve loc i ty .  I n  t h e  

l i m i t  o f  very  small (&/w)’s, r e t en t ion  r a t i o  R becomes l i n e a r l y  

dependent on &/w, implying t h a t  even r e l a t i v e l y  small devia t ions  

i n  .& give  r i s e  t o  considerable d i f fe rences  i n  migration r a t e .  

It i s  seen t h a t  t h e  smaller t h e  .& 

I n  common with o ther  methods of  separation, zone spreading 

i n  FFF i s  a process of g rea t  importance, a f f ec t ing  component 

r e so lu t ion  and ove ra l l  peak capacity.  Zone spreading can be 

characterized by t h e  p l a t e  he ight ,  which i s  defined’* as 

H = a2/L. The p l a t e . h e i g h t  can be described by t h e  equation4 
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F I E L D  FLOW FRACTIONATION 

I .c 
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FIGURE 2 

Variation o f  re tent ion r a t i o  R with A/w f o r  an isothermal system. 
(See Equation 14.) 
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GRUSHKA ET AL. 

I n  these  expressions u2  i s  the  variance of a so lu t e  zone just; 

p r i o r  t o  e lu t ion  and L ,  as  above, the  l eng th  of t he  f i e l d -  

exposed channel. 

s ide  represents  d i spers ion  due t o  long i tud ina l  d i f fus ion ,  and 

i s  the re fo re  dependent upon t h e  time t h e  zone spends i n  the  

channel, implying an inverse  dependence on zone v e l o c i t y  R(v). 

The second term r e f l e c t s  t he  departure from equilibrium due to 

t h e  a x i a l  ve loc i ty ,  and i s  influenced by t h e  geometry of t h e  flow- 

channel. It i s  propor t iona l  t o  mean flow v e l o c i t y  ( v ) ,  as  i n  

chromatography. The l a s t  term, f i n a l l y ,  sums up t h e  p l a t e  height 

cont r ibu t ions  caused by o ther  phenomena, such as  the  f i n i t e  width 

of t he  i n j e c t i o n  slug, r e l axa t ion  time ( i . e . ,  t h e  time involved 

i n  t h e  i n i t i a l  establishment o f  t h e  l a t e r a l ,  f ield-induced, 

concentration p r o f i l e ) ,  and zone d ispers ion  occurring i n  t h e  

i n j e c t o r  o r  de t ec to r .  

The f i r s t  of t he  t h r e e  terms on t h e  r i g h t  hand 

The symbol D1 i n  equation 16 r ep resen t s  t he  long i tud ina l  

d i f fus ion  coe f f i c i en t .  I d e a l l y  D1 i s  constant across  t h e  channel. 

This condition i s  obviously not  t r u e  i n  t h e  case of so lu t e s  with 

important second v i r i a l  coe f f i c i en t s ,  a s  a r e  found i n  systems 

with l a r g e  amounts of sample or with h ighly  compressed zones 

(small a ’ s ) .  

appl icable  t o  these  nonideal and the re fo re  nonlinear systems. 

A l i n e a r  case i n  which d i f f u s i v i t y  i s  not constant occurs with 

thermal FFF, where the  imposed temperature grad ien t  causes a 

v a r i a t i o n  i n  the  d i f fus ive  behaviour across  t h e  channel. I n  

t h i s  case, D1 i s  a c ross -sec t iona l  average of  l o c a l  D va lues  

However t h e  p l a t e  height concept i s  not  t r u l y  

The parameter D2 i s  an a x i a l  d i f fus ion  c o e f f i c i e n t ,  which 

can be given t h e  value D1 o r  any o ther  des i r ed  value with t h e  

proper choice of x. I n  t h e  case of TFFF it has been considered 

most t r a c t a b l e  t o  use e i t h e r  t h e  d i f fus ion  coe f f i c i en t  a t  t h e  
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FIELD FLOW FRACTIONATION 

zone's center of g r a v i t y  ( t h a t  i s ,  a t  x 

where concentration and temperature a re  e a s i l y  obtained, or  a t  

t he  cold w a l l  f o r  even g rea t e r  convenience. For most nonthermal 

methods of FFF, of course, D2 = D1 = D(x) . 

= ( x . c ( x ) > / ( c ( x ) > ) ,  
cg  

The non-equilibrium coe f f i c i en t ,  x, has'been discussed 

e l ~ e w h e r e ~ ' ~ .  Some l i m i t i n g  cases a re  of major importance. I n  

t h e  l i m i t  o f  very  t h i n  so lu t e  l a y e r s  between p a r a l l e l  p l a t e s  

In  a laminar flow s i t u a t i o n  without f i e l d ,  X v a r i e s  from 1/96 f o r  

a channel with c i r c u l a r  cross sec t ion ,  t o  1/105 i n  t h e  case o f  

i n f i n i t e  p a r a l l e l  p l a t e s .  Most of  t h e  experimental r e s u l t s  have 

been obtained i n  channels with a t  l e a s t  a 40:1 r a t i o  between 

breadth and width. For p r a c t i c a l  purposes these  can be approxi- 

mated by t h e  i n f i n i t e  p a r a l l e l  p l a t e  case.  It i s  obvious from 

equation 16 t h a t  no matter what t h e  geometry and b/w value,  t h e  

cont ro l  of t h e  a x i a l  solvent ve loc i ty  i s  of utmost importance 

f o r  t h e  reduction of H and t h e  r e s u l t i n g  optimization of reso lu-  

t i o n  and peak capacity.  

Theory thus ind ica t e s  t h a t ,  under t h e  influence of a force-  

f i e l d ,  d i f f e r e n t  species i n  a flow channel will each form a zone 

with a c h a r a c t e r i s t i c  "atmospheric he ight , "  j,, which w i l l  be 

coupled unequally with the  ve loc i ty  p r o f i l e ,  thus providing t h e  

d i f f e r e n t i a l  migration needed for reso lu t ion .  

We w i l l  now proceed t o  d iscuss  some appl ica t ions  of t h e  

above out l ined  theory.  

111. ELECTRICAL FFF 

The flow channel i n  t h i s  case has semi-permeable walls,  

perpendicular t o  the  f i e l d  d i r ec t ion ,  t o  allow t h e  passage o f  
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GRUSHKA ET AL. 

small ions while re ta ining macromolecules. The electrodes a re  

w e l l  removed from the channel w a l l s  i n  order t o  insure a constant 

f i e l d  across the  channel without disturbing influences from the 

electrode reactions5. 

(cm*/sec-Volt), exposed t o  a f i e l d  of E(Volt/cm) , w i l l  acquire 

a dr i f t  ve loc i ty  

A macromolecule with mobili ty p 

U = pE (19) 

Hence the  "atmospheric height" of a zone of t h i s  pa r t i cu la r  

solute  i n  an e l e c t r i c a l  field-flow s i tua t ion  takes the  form 

Since the mobility, and t o  some extent t he  diffusion coe f f i c i en t ,  

vary with pH, w e  can se l ec t  conditions su i t ab le  fo r  a pa r t i cu la r  

separation problem ( see  Figure 3).  This has, of course, always 

been a strong point of conventional e lectrophoret ic  techniques. 

Advantages of  EFFF include the f a c t  t h a t  thermal e f f e c t s  are 

of minor consequence and applied voltages need not be excessively 

high. 

Figure 4 shows the  e s s e n t i a l  f ea tu re s  of the EFFF method. 

One of  t he  most severe experimental d i f f i c u l t i e s  with t h i s  method 

i s  the acquis i t ion of su i t ab le  membranes for the channel walls.  

Obvious requirements a re  t h a t  they be semi-permeable with a 

cut-off limit of around MW 10,000; t h a t  t h e i r  permeability be 

non-selective on the ionic  l e v e l ;  t h a t  they be uncharged; 

and f i n a l l y  t h a t  they be mechanically s table .  Some regenerated 

cel lulose membranes f u l f i l l  these requirements moderately well. 

When stretched, most membranes become f la t - -but  obstacles i n  

the flow channel, such as  an occasional gas bubble blocking the 

ou t l e t ,  tend t o  expand the channel volume and d i s t o r t  the 

p a r a l l e l  p l a t e  s i tuat ion.  
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A. 

E = 2.95 volt/cm 

Albumin with E =O 
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FIGURE 3 

Prote in  separation by e l e c t r i c a l  f ie ld- f low f r a c t i o n  (EFFF) . The 
order of  e l u t i o n  of albumin and Y-globulin i s  reversed by changing 

from a pH = 4.5 i n  A t o  a pH = 8.0 i n  B. 
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GRUSHKA ET AL. 

Upper membrane? 

arabolic flow profile 

Lower membraneJ 0 U 
Zone A Zone B 

FIGURE 4 

Diagrammatic representa t ion  of EFFF apparatus.  

Figure 5 demonstrates t h a t ,  i n  s p i t e  of e x i s t i n g  experi-  

mental problems, our EFFF da ta  a re  i n  reasonable agreement with 

theory. 

with l / E  as  pred ic ted ;  however i n  c e r t a i n  cases t h e  l i n e s  cut 

t h e  axes away from the  o r ig in ,  poss ib ly  due t o  s e l e c t i v e  permea- 

t i o n  by the  i o n i c  cons t i t uen t s  of t h e  buf fer  so lu t ion .  

The parameter a/w always showed a l i n e a r  r e l a t ionsh ip  

I V .  GRAVITATIONAL FFF 

If we accommodate t h e  flow channel i n s ide  a c e n t r i f x a l  

basket,  and sp in  it wi th  an angular ve loc i ty ,  w ,  t h e  p a r t i c l e s  

wi th in  t h i s  channel will experience a force ,  equal t o  

where p i s  t he  dens i ty  of t he  so lu te  and po t h a t  o f  t h e  so lvent ;  

w 2 r  i s  t he  c e n t r i f u g a l  acce lera t ion  a t  r ad ius  r ;  and l/ i s  the  
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0.; 

e F 0.1 

0 

I I 1 I I I 1 
- 

- 

0 0. I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
1 
E 
- 

FIGURE 5 

I l l u s t r a t i o n  of  e l e c t r i c a l  f ield-flow f r ac t iona t ion  with albumin a t  
pH = 8.0, p l o t t i n g  J/w versus 1/E, where E i s  i n  v o l t s  pe r  cen t i -  
meter. Theoretical  l i n e  ca lcu la ted  using p = 7.3 x 10-5 cm2/sec-V 

a t  25' C. 

molecular volume. Since the thickness of t h e  channel i s  neg- 

l i g i b l e  i'n comparison with t h e  rotor r ad ius ,  u'r i s  f o r  a l l  

p r a c t i c a l  purposes constant across the  channel and w i l l  be 

assigned t h e  symbol G.  If we express I' i n  terms of molecular 

weight M and so lu te  dens i ty  p, t h e  force  equation takes the  

following form 

PO F =  - .  G (1 - - )  
P 

N being Avoga&ro's number. A p a r t i c u l a r  so lu te  with f r i c t i o n  

coef f ic ien t  f w i l l  consequently assume a d r i f t  ve loc i ty  of t h e  

following magnitude 
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GRUSHKA ET AL. 

The f r i c t i o n  coe f f i c i en t  equals 

(34) k T  f = -  
D 

where k i s  Boltzmann’s constant and T is t he  absolute temperature 

of the system. With t h i s ,  t he  important parameter a (equat ion  5) 
w i l l  have the  following form 

where R. i s  the  gas constant.  There a re  obviously two s o l u t e  

s p e c i f i c  parameters en ter ing  t h i s  equation: M and p .  Three 

o ther  parameters depend upon experimental conditions:  T ,  G and 

p,. The l a t t e r  can be ad jus ted  t o  optimize separa t ion .  

I n  no o ther  experimental appl ica t ion  of the  Field-Flow 

technique does t h e  channel geometry p l a y  as  important a r o l e  

a s  it does i n  GFFF. I t  has been ~ b s e r v e d l ~ ” ~  t h a t  tubular  flow 

ins ide  a spinning duct gives r i s e  t o  a secondary flow component, 

t h e  magnitude of  which depends upon the  a x i a l  ve loc i ty .  The 

p a t t e r n  exhib i ted  by secondary flow i s  i l l u s t r a t e d  i n  Figure 6. 
This diagram shows t h a t  t he  flow has a l a t e r a l  d i r e c t i o n ;  

the  f l u i d  moves outward across  the  center  of the  tube and s p l i t s  

c lose  t o  the  outer  wal l  i n t o  two pe r iphe ra l  back-fluxes. The 

ne t  r e s u l t  of t h i s  e f f e c t  i s  a symmetrical double s p i r a l i n g  

motion forward i n  the  a x i a l  d i r ec t ion .  There i s  a narrow l a y e r  

near the  walls which, due t o  the  v i s c o s i t y  of the  l i q u i d  and i t s  

slow a x i a l  motion i n  t h e  a rea ,  will not  p a r t i c i p a t e  t o  any 

subs t an t i a l  degree i n  t h i s  h e l i c a l  movement. The l a r g e r  t h e  

bulk v e l o c i t y  and t h e  s t ronger  the  f i e l d ,  t h e  narrower t h i s  zone 

w i l l  be, and t h e  more pronounced will be the  requi red  l a t e r a l  

o r i en ta t ion  o f  so lu t e  i n  the  f i e l d  i n  order t o  ge t  any r e t en t ion .  
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FIELD FLOW FRACTIONATION 

OUTER 
WALL 

FIGURE 6 

Secondary flow p a t t e r n s  i n  tubes of c i r c u l a r  c ross  sec t ion .  

With t h e  he lp  of Figure 6 we r e a l i z e  t h a t  a moderately l a r g e  fi 

w i l l  l e ad  t o  a most unfortunate zone spreading and a t o t a l  depar- 

t u r e  from t h e  b a s i s  of  FFF theory.  The " i n f i n i t e  p a r a l l e l  p l a t e "  

geometry i s  f a r  more he lpfu l  i n  t h i s  s i t u a t i o n  s ince  the  pressure  

d i f fe rence  generated between inner  and outer  wall  i s  very  small. 
I n  our  case, t h e  r a t i o  of width t o  breadth i s  1:40, which has 

proven t o  be qu i t e  adequate. With t h i s  type of channel, M r .  Frank 

Yang i n  t h i s  l abora to ry  has achieved t h e  d i f f e r e n t i a l  migration 

of  polystyrene beads ( p  = 1.05) o f  d i f f e r e n t  s i z e s ,  using d i s t i l l e d  

water as  t h e  car r ie r16 .  

theory  shows t h a t  t h e  e f f e c t s  of secondary flow have become 

neg l ig ib l e  (F igure  7). 
c l e s  (T2, MVl 49 x lo6, p = 1.57 and T 7 ,  MW 240 x lo6, p = 1.57) 
i n  aqueous buf fer  so lu t ion  also show good r e t e n t i o n  a t  very  

moderate angular v e l o c i t i e s  (2000 rpm) . 

A qu i t e  comforting correspondence wi th  

A s e r i e s  of experiments with v i r u s  p a r t i -  
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FIGURE 7 

Parameters f o r  g r a v i t a t i o n a l  f ie ld- f low f r ac t iona t ion  (GFFF) using 
0.lOg p polystyrene l a t e x  p a r t i c l e s .  G i s  expressed i n  cgs u n i t s .  

I n  an independent s e r i e s  o f  experiments s imi l a r  i n  scope t o  

our CFFF system, Berg and Purce l l  succeeded i n  achieving r e t e n t i o n  

of var ious  p a r t i c l e s  i n  both t h e  e a r t h ’ s  g r a v i t a t i o n a l  f i e l d  and 

i n  a l abora to ry  cen t r i fuga l  field17’18. The former was r e a l i z e d  

i n  two ways: i n  a f l a t  channel with laminar flow between two 
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FIELD FLOW FRACTIONATION 

g l a s s  p l a t e s  and on one p l a t e  with an e s s e n t i a l l y  s t a t i c  de te rgent  

f i l m  a t  t h e  top of t he  flowing l i q u i d  l a y e r .  

between monomers, dimers andtrimers of l a t e x  beads 0.8 p and 1 .3  p 

i n  diameter. 

Separation occurred 

The cen t r i fuga l  f i e l d  was appl ied  t o  a sample of bac te r io-  

phage R 1 7  (MW 4 x lo6) contaminated wi th  low molecular weight 

mater ia l .  The r o t o r  i n  t h i s  case was a long hollow cyl inder  

revolving around a v e r t i c a l  axes. The l i q u i d  f i l m  was held i n  

p lace  by t h e  f i e l d  and i t s  th ickness  was regula ted  by a b a r r i e r  

a t  t he  r o t o r  bottom. 

V. THERMAL FFF 

From an experimental viewpoint, thermal FFF i s  t h e  simplest  

and t h e  most explo i ted  of t h e  f ie ld- f low . However, 

from a t h e o r e t i c a l  standpoint,  it i s  t h e  most complex member of 

t he  FFF family4. F i r s t  of a l l ,  a temperature g rad ien t  across  a 

channel ensures v i s c o s i t y  d i f fe rences  between top  and bottom 

w a l l s ,  l ead ing  t o  d i s t o r t i o n s  in' t he  parabol ic  v e l o c i t y  p r o f i l e .  

Furthermore the  ord inary  Fickian d i f fus ion  coe f f i c i en t  i s  no 

longer constant across  t h e  channel, and i n  a l l  l i ke l ihood  t h e  

dr iv ing  fo rce  of t h e  system--the thermal d i f fus ion- -a l so  v a r i e s .  

The so lvent  dens i ty  a l so  acqui res  a l a t e r a l  gradation. For 

these  reasons,  the  mathematical desc r ip t ion  of t he  concentration 

p r o f i l e  i s  not as  s t r a i g h t  forward as  a r e  those  f o r  prev ious ly  

discussed cases.  Therefore f o r  t h e  sake of c l a r i t y  we d iscuss  

the  p a r t i c u l a r  mater ia l  f l u x  equation which i s  p e r t i n e n t  t o  TFFF. 

Introducing D' as  t h e  thermal d i f fus ion  c o e f f i c i e n t ,  c 

as  t he  t o t a l  number of moles ( s o l u t e  p l u s  so lvent )  p e r  u n i t  

volume, and X as t he  so lu t e  mole f r a c t i o n  

T 

dx dT J = - D c  - - D'c X ( 1 - X ) -  T d x  T dx 
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GRUSHKA ET AL. 

For d i l u t e  so lu t ions  (1 - X) approximates uni ty .  

temperature grad ien t  implies a grad ien t  i n  so lu t ion  dens i ty ,  

c w i l l  be va r i ab le  with x. The so lu te  concentration, c ,  

equals cT X, and i t s  de r iva t ive  with respec t  t o  x looks as follows 

Since the  

T 

T dx dc - = x -  + c - 
dx dx T d x  

dc 

Subs t i tu t ion  of  t h i s  i n t o  Equation 26, and t h e  subs t i t u t ion  of c 

f o r  c X and cy for - T leads  t o  D' 
T D 

J =  - D[(g+ c - -  Cy dT ' 
c dcT ~ 

T dx -TT dx J 
After we transform the  l a s t  term of equation 18 i n t o  a tempera- 

t u r e  sens i t i ve  form, 

c T -  c dcT . dc 

c d x  
- - . - - - - . - 

c dT dx ' T T 

we recognize t h e  appearance of t he  coe f f i c i en t  f o r  thermal 

expansion, 

. dc, I 'L' y = - -  . -  
T c dT 

which f o r  p r a c t i c a l  purposes i s  neg l ig ib l e  i n  TFFF, but which 

w i l l  be r e t a ined  f o r  t h e  sake of gene ra l i t y  i n  t h e  so lu t ion  of 

t he  flux equation. Under steady s t a t e  conditions,  where J =  0 ,  

Equation 28 can be rearranged t o  

which i n  i t s  simpler and more p r a c t i c a l  fo rm g ives  

T 
dT a * -  dx 

& = -  

14 4 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
2
0
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



FIELD FLOW FRACTIONATION 

If we assume t h e  temperature grad ien t  t o  be l i n e a r ,  dT/dx can be 

replaced by AT/w, which shows a/w t o  be inve r se ly  dependent upon 

the  t o t a l  temperature d i f fe rence ,  AT. 

some observations on a polystyrene of 5l,OOO molecular weight i n  

ethylbenzen?. These polystyrene s tud ie s  have been extended t o  

solvents o ther  than toluene with considerable success. However 

the  nature of t h e  solvent i s  q u i t e  important f o r  t h e  magnitude 

of t he  observed e f f ec t .  Strong hydrogen-bonding systems, fo r  

In Figure 8 we present  

0.2 - 

- I w 0.1 - 

FIGURE 8 

Retention c h a r a c t e r i s t i c s  of thermal f ie ld- f low f r ac t iona t ion  with 
5l,OOO molecular weight polystyrene i n  ethylbenzene. 
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GRUSHKA E T  AL. 

ins tance ,  seem t o  provide only feeble  thermal d i f fus ion  e f f e c t s .  

Studies of  a wide v a r i e t y  of p ro te ins ,  nuc le ic  ac ids  and dextrans 

i n  our  labora tory ,  a l l  i n  aqueous buf fer  so lu t ions ,  gave absolute- 

l y  no r e t en t ion .  A Blue Dextran f r a c t i o n  of MW 2 x lo6 was then 

se lec ted  f o r  study i n  a s e r i e s  of aqueous mixtures o f  DMSO. No 

r e t en t ion  was observed u n t i l  6@ DMSO, but as  t he  DMSO concen- 

t r a t i o n  increased ,  t he  e f f e c t  became more and more not iceable .  

Further s tud ie s  a r e  being pursued i n  which t h e  water s t r u c t u r e  

has been per turbed  by var ious  known s t r u c t u r e  breakers,  such as  

guani dinium hydrochloride . 

V I .  PROGRAMMING TECHNIQUES I N  FFF 

I n  cases where the  samples a re  very  inhomogeneous with sub- 

stantial d i f fe rences  i n  molecular weights, d e n s i t i e s ,  e l e c t r o -  

phore t i c  mob i l i t i e s ,  o r  other parameters a f f ec t ing  t h e  d r i f t  

v e l o c i t i e s ,  it i s  necessary t o  apply a strong f i e l d  a t  the  

beginning of a separa t ion  run t o  f r ac t iona te  t h e  l e a s t  r e t a i n e d  

components. 

volumes, so lu t e s  which a re  only s l i g h t l y  o r  no t  a t  all a f fec t ed  

by the  f i e l d  will have l e f t  t he  channel, and i t  becomes advan- 

tageous t o  reduce t h e  f i e l d  success ive ly  i n  order t o  speed the  

e lu t ion  of h ighly  r e t a ined  components and thus  t o  economize on 

time. A f i e l d  reduct ion  will i n  a l l  cases l e a d  t o  a steady 

increase  i n  4 with a subsequent decrease i n  e lu t ion  time (F igure  

9). 
a v a r i a t i o n  of some so lu te - re la ted  proper ty  such a s  e l ec t ro -  

phore t i c  mobili ty,  reduced mass, or thermal d i f f u s i v i t y .  Such 

v a r i a t i o n s  will cause 

Figure 10).  

After t h e  e l u t i o n  of a s u i t a b l e  number of column 

The force  ac t ing  on a molecule can also be changed through 

t o  go through a d i scon t inu i ty  ( s e e  

I n  case of EFFF, where ( s e e  Equation 20), 
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FIELD FLOW FRACTIONATION 

FIELD - 
FIGURE 9 

Variation of a/w with f i e l d  s t rength,  showing how programming with 
a decreasing f i e l d  leads t o  a s t e a d i l y  increasing a/w. 

we have several  p o s s i b i l i t i e s  for var i a t ion  of r e t en t ion ,  as 

follows. First, a gradient i n  pH would, although not e x p l i c i t l y  

obvious from t he  equation, affect2' D and thus a .  
l y ,  it would a l t e r  the mobili ty p .  Since the m W Q  d each so lu t e  

goes through zero a t  t he  respect ive i s o e l e c t r i c  point  and then 

More important- 
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PROGRAMMING 

I 

0 
Mobility or Reduced Mass 

FIGURE 10 

Variation of A/w with t h e  so lu t e  r e l a t e d  parameters, mobi l i ty  
and reduced mass, a t  constant f i e l d  s t rength .  Programming, i f  
ca r r i ed  too  far, w i l l  t r a n s f e r  so lu t e  t o  t h e  opposite wall ( a t  
t h e  p lace  ind ica ted  by t h e  d i scon t inu i ty  i n  t h e  f i g u r e ) ,  and 

could l e a d  t o  d i s rup t ive  zone pa t t e rns .  
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FIELD FLOW FRACTIONATION 

increases  again upon f u r t h e r  change i n  pH, such a grad ien t  would 

need t o  be r e s t r i c t e d .  

The temperature i s  another va r i ab le  not e x p l i c i t l y  en tered  

The poss ib le  r e s u l t s  of a temperature i n  the  expression f o r  a. 
v a r i a t i o n  a r e ,  as  i n  most FFF methods, of l imi t ed  scope s ince  

the  v a r i a b i l i t y  has t o  be confined t o  t h e  l i q u i d  range of t h e  

solvent.  Most appealing of all i s  the  p o s s i b i l i t y  of programming 

the  e l e c t r i c a l  f i e l d  s t rength ,  E ,  with temperature and pH kept  

constant.  

The GFFF presents  t h ree  parameters t h a t  can be a l t e r e d  by 

changing conditions,  as  i s  seen i n  equation 25, according t o  

which 

This equation shows t h a t  temperature, solvent dens i ty ,  o r  

cen t r i fuga l  acce lera t ion  a re  open t o  va r i a t ion .  A s  d i scussed  

above, obvious l i m i t s  e x i s t  t o  t he  operable temperature range, 

which discourage a v a r i a t i o n  i n  T .  On the  contrary,  both solvent 

dens i ty  and cen t r i fuga l  acce le ra t ion  a r e  quan t i t i e s  t h a t  e a s i l y  

l end  themselves t o  va r i a t ion .  The case of a dens i ty  grad ien t  

i s  similar i n  scope t o  t h a t  of a grad ien t  i n  pH, but i f  c a r r i e d  

too f a r  would t r a n s f e r  so lu t e  t o  the  opposite wall .  More 

s t ra ight forward  i s  a v a r i a t i o n  i n  W2r  o r  G ,  t h e  cen t r i fuga l  f i e l d .  

A s  fo r  the  thermal f i e l d ,  where t h e  thickness of the  so lu t e  

l aye r  i s  expressed by 

D and D' would be temperature dependent, but again a v a r i a t i o n  

i n  average temperature, keeping the  grad ien t  dT/dx constant,  

has too l i m i t e d  an e f f ec t  on a .  A programned decrease i n  t h e  
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GRUSHKA ET AL. 

temperature grad ien t ,  however, has proven q u i t e  u se fu l  a s  a time 

saving operation3. It has been demonstrated experimentally t h a t  

thermal d i f fus ion  d i f f e r s  with d i f fe rences  i n  solvent.  I t  i s  

therefore  poss ib le  t o  imagine a solvent grad ien t  i n  TFFF as 

a poss ib le  analog t o  t h e  pH gradien t  mentioned above f o r  EFFF. 

VII. CONCLUSIONS 

The Field-Flow Frac t iona t ion  method shows considerable 

t h e o r e t i c a l  p o t e n t i a l  f o r  macromolecular separa t ions .  Up t o  now 

the  experimental hurdles i n  t h e  pa th  of achieving t h i s  p o t e n t i a l  

have been only p a r t i a l l y  breached. However t h e  method i s  so 

broad i n  scope t h a t  t h e  f a i l u r e  of any one sub-technique f o r  a 

given c l a s s  of compounds leaves  open t h e  p o s s i b i l i t y  of exp lo i t -  

ing  severa l  o thers .  The inherent  advantages of t he  technique, 

combined with such a v e r s a t i l e  v a r i e t y  o f  approaches, encourages 

optimism a s  t o  t h e  u l t imate  r o l e  of FFF i n  macromolecular separa- 

t i ons .  
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